Java集合与并发编程深度解析:常用类、线程安全实现与底层原理
一、ArrayList线程安全问题与解决方案
问题演示
java
public class UnsafeListDemo {
public static void main(String[] args) throws InterruptedException {
List<Integer> list = new ArrayList<>();
Thread t1 = new Thread(() -> {
for (int i = 0; i < 1000; i++) {
list.add(i);
}
});
Thread t2 = new Thread(() -> {
for (int i = 0; i < 1000; i++) {
list.add(i);
}
});
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("最终大小: " + list.size()); // 结果可能小于2000
}
}
解决方案1:使用CopyOnWriteArrayList
java
List<Integer> safeList = new CopyOnWriteArrayList<>();
// 线程操作代码同上
// 最终输出保证为2000
解决方案2:使用同步包装类
java
List<Integer> syncList = Collections.synchronizedList(new ArrayList<>());
// 线程操作代码同上
二、HashMap并发问题与ConcurrentHashMap
问题演示(可能引发死循环)
java
public class HashMapConcurrentIssue {
static Map<String, Integer> map = new HashMap<>();
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(10);
for (int i = 0; i < 10; i++) {
final int key = i;
executor.execute(() -> {
for (int j = 0; j < 1000; j++) {
map.put(String.valueOf(key), j);
}
});
}
executor.shutdown();
// 可能产生数据丢失或死循环
}
}
解决方案:ConcurrentHashMap
java
Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
// 线程操作代码同上
三、原子操作计数器对比
问题演示(synchronized方案)
java
class SynchronizedCounter {
private int count = 0;
public synchronized void increment() {
count++;
}
public synchronized int get() {
return count;
}
}
优化方案:AtomicLong
java
class AtomicCounter {
private AtomicLong count = new AtomicLong(0);
public void increment() {
count.incrementAndGet();
}
public long get() {
return count.get();
}
}
高性能方案:LongAdder(适合高并发统计)
java
class LongAdderCounter {
private LongAdder adder = new LongAdder();
public void increment() {
adder.increment();
}
public long get() {
return adder.sum();
}
}
四、生产者-消费者模式实现
使用BlockingQueue实现
java
public class ProducerConsumerDemo {
private static final BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(10);
public static void main(String[] args) {
// 生产者
new Thread(() -> {
try {
for (int i = 0; ; i++) {
queue.put(i);
System.out.println("生产: " + i);
Thread.sleep(200);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
// 消费者
new Thread(() -> {
try {
while (true) {
Integer item = queue.take();
System.out.println("消费: " + item);
Thread.sleep(500);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}
五、锁机制对比示例
ReentrantLock基本使用
java
class LockDemo {
private final ReentrantLock lock = new ReentrantLock();
private int count = 0;
public void safeIncrement() {
lock.lock();
try {
count++;
} finally {
lock.unlock();
}
}
}
读写锁应用
java
class ReadWriteCache {
private final ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
private final Map<String, Object> cache = new HashMap<>();
public Object get(String key) {
rwLock.readLock().lock();
try {
return cache.get(key);
} finally {
rwLock.readLock().unlock();
}
}
public void put(String key, Object value) {
rwLock.writeLock().lock();
try {
cache.put(key, value);
} finally {
rwLock.writeLock().unlock();
}
}
}
六、并发集合性能测试对比
java
public class CollectionPerformanceTest {
static final int THREAD_COUNT = 100;
static final int OPERATION_COUNT = 100000;
static void test(Collection<Integer> collection) {
long start = System.currentTimeMillis();
ExecutorService executor = Executors.newFixedThreadPool(THREAD_COUNT);
for (int i = 0; i < THREAD_COUNT; i++) {
executor.execute(() -> {
for (int j = 0; j < OPERATION_COUNT; j++) {
collection.add(j);
}
});
}
executor.shutdown();
while (!executor.isTerminated());
long duration = System.currentTimeMillis() - start;
System.out.println(collection.getClass().getSimpleName() + " 耗时: " + duration + "ms");
}
public static void main(String[] args) {
test(new ArrayList<>()); // 线程不安全,结果可能异常
test(new Vector<>()); // 同步锁性能较低
test(new CopyOnWriteArrayList<>()); // 写时复制适合读多写少
}
}
最佳实践总结
- 根据场景选择工具:
- 读多写少 → CopyOnWriteArrayList
- 写多读少 → ConcurrentHashMap
- 精确控制 → ReentrantLock
- 简单原子操作 → Atomic类
- 性能优化技巧:
- 避免在锁内执行耗时操作
- 使用ConcurrentHashMap的分段锁机制
- 优先考虑无锁编程(CAS)
- 问题排查工具:
# 查看线程状态
jstack <pid>
# 监控内存使用
jstat -gcutil <pid> 1000
# 性能分析
jvisualvm
这些案例覆盖了Java并发编程中最常见的场景,开发者应根据具体需求选择最合适的并发工具和集合类,同时结合性能测试工具进行验证。